Study Plan
The Bachelor in prepares students to qualify for Bachelor in . The student studies several subjects which have been carefully chosen in this major to cover its different aspects.
It comprises 8 Semesters of study, in which the student will study a total of 135 units, which include 80 units of general subjects, and 40 major units, 15 of elective units. In addition to a final project in the student's major.
Study plan for this program is shown below:
1st Semester
Code | Title | Credits | Course Type | Prerequisite |
---|
ITAR111 | Arabic language 1 | 02 | Compulsory | + |
Introduction: the importance of studying Arabic, the need for mastering Arabic, the importance of Arabic in nationalistic, religious, civilization and cultural frames, the role of civilization in effacing Arabic, some grammatical rules: words, sentence structures, verbal sentences, some dictation rules, looking up words.
ITEL111 | General English1 | 02 | Compulsory | + |
Nouns (types, function, derivations), adjectives (types, sequence, derivations) adverbs (forms, position), use and forms of the ultimate tense, interrogative formations, negative of verbs. Passive constructions (forms, usages), adjective clauses (recognition and types, case of relative pronoun), gerund phrases, infinitive phrases, listening comprehension.
ITMM111 | Mathematics I | 03 | Compulsory | + |
This course provides students with basic concepts of real functions in a single variable, and concepts of ends and continuity. It also addresses the rules of differentiation. This course aims to develop the student's ability to determine the types of real, compulsory and non-compulsory functions, to chart them, to determine the scope, extent and reverse functions of them, to determine the existence of the end, as well as to know the continuity of the functions and to determine whether they are derivable. The course also aims to enhance students' skills in drawing curves using preferential concepts and demonstrations, through scheduled training and the diversity of evaluation methods. The rapporteur focuses on understanding real functions in a single and derivative variable and its applications that help him to understand the behaviour of multiple functions in his future study.
ITPH111 | Physics | 03 | Compulsory | + |
Current and voltage: resistance and resistivity, Ohm's law, Power, energy, series and parallel resistance cuircuits, Kirchoff's laws. Waveforms: sinusovoltage: resistance and resistivity, Ohm's law, Power, energy, series and parallel resistance cuircuits, Kirchoff's laws.Waveforms: sinusoidal AC voltage and current, inductance, phase relations and elements of phasor, digital waveforms, digital timing (clock signals, jitter, drift, skew, hysteresis.Semiconductor diodes: semiconductor materials, extrinsic materials (n-type & p-type, energy levels, diode notation, diode equivalent circuits, transition and diffusion capacitance, reverse recovery time, zener diode and LEDs.Diode applications: load line analysis, diode approximation, series diode configurations, parallel and series-parallel configuration, AND/OR gates, half-wave rectification, full-wave rectification, clippers, clampers, voltage multiplier circuits
4th Semester
Code | Title | Credits | Course Type | Prerequisite |
---|
ITGS240 | Introduction to Artificial Intelligence | 03 | General | + |